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Abstract

Background The field of implementation science was developed to address the significant time delay

between establishing an evidence-based practice and its widespread use. Although implementation science

has contributed much toward bridging this gap, the evidence-to-practice chasm remains a challenge. There are
some key aspects of implementation science in which advances are needed, including speed and assessing causality
and mechanisms. The increasing availability of artificial intelligence applications offers opportunities to help address
specific issues faced by the field of implementation science and expand its methods.

Main text This paper discusses the many ways artificial intelligence can address key challenges in applying imple-
mentation science methods while also considering potential pitfalls to the use of artificial intelligence. We answer
the questions of “why”the field of implementation science should consider artificial intelligence, for “what” (the pur-
pose and methods), and the “what” (consequences and challenges). We describe specific ways artificial intelligence
can address implementation science challenges related to (1) speed, (2) sustainability, (3) equity, (4) generalizability,
(5) assessing context and context-outcome relationships, and (6) assessing causality and mechanisms. Examples are
provided from global health systems, public health, and precision health that illustrate both potential advantages
and hazards of integrating artificial intelligence applications into implementation science methods. We conclude

by providing recommendations and resources for implementation researchers and practitioners to leverage artificial
intelligence in their work responsibly.

Conclusions Artificial intelligence holds promise to advance implementation science methods (“why”) and acceler-
ate its goals of closing the evidence-to-practice gap (“purpose”). However, evaluation of artificial intelligence’s poten-
tial unintended consequences must be considered and proactively monitored. Given the technical nature of artificial
intelligence applications as well as their potential impact on the field, transdisciplinary collaboration is needed

and may suggest the need for a subset of implementation scientists cross-trained in both fields to ensure artificial
intelligence is used optimally and ethically.
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Contributions to the literature

» Artificial intelligence may be integrated into implemen-
tation science research and practice to enhance speed,
sustainability, equity, and generalizability as well as the
ability to assess context, context-outcome relation-
ships, and causality. We highlight ways artificial intel-
ligence can complement implementation science meth-
ods and provide examples.

Using artificial intelligence with implementation sci-
ence methods can also present new challenges and
unintended consequences. We describe the potential
pitfalls of using artificial intelligence, along with exam-
ples.

We offer recommendations and resources on how to
begin to responsibly integrate artificial intelligence into
implementation science methods, including transdisci-
plinary collaboration and proactive monitoring for and
mitigation of potential unintended consequences.

0

0

Background

Healthy People 2030 vision calls for a “society in which all
people can achieve their full potential for health and well-
being” [1]. This vision is aspirational and leaves much to
be done. Among high-income countries, the average
number of annual deaths that could be avoided altogether
with preventive or treatment strategies ranges from 130
to more than 330 per 100,000 people [2]. Although the
lag time from knowledge generation to translation varies
by situation, recent estimates suggest the average time is
15 years, which is a modest improvement from prior esti-
mates [3, 4]. To move the needle and make real progress
toward this vision, we need to do better faster, which
includes producing and sustaining equitable results. We
need more rapid knowledge generation and translation
done in replicable, equitable, sustainable, locally relevant,
and externally valid ways [5, 6]. Implementation science
(IS) can play a key role in translating evidence into prac-
tice and policy.

IS methods and approaches can drive improvements
in equity, sustainability, and the balance between local
relevance and external validity needed to support trans-
lational science. When used by learning health systems
or, more generally, in healthcare or public health settings,
IS can iteratively support the continuum of knowledge
generation to translation in many ways [7]. IS specifically
focuses on feasibility and relevance to the local context
while also considering principles of designing for dissem-
ination, sustainability, and equity [8]. Importantly, equity
is considered at each step in the continuum of knowl-
edge generation to translation and promoted through the
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representation of partner perspectives and representa-
tiveness of outcomes [9-16]. However, IS has several lim-
itations and challenges, notably the time and resources
required to apply its methods and approaches. Such con-
straints can lead to reduced frequency, sample sizes, or
representation of partner engagement and hamper other
methods commonly used to assess context and outcomes
[17]. Such limitations can dampen the potential for IS to
enhance reach, equity, sustainability, and generalizability
and ultimately impede its ability to close the evidence-to-
practice gap.

As artificial intelligence (AI) gains prominence in the
public health and healthcare sectors, it provides avenues
to address some of the challenges to IS. Al algorithms
such as machine learning (ML), deep learning (DL), and
reinforcement learning (RL) serve as the foundation.
Domain applications of these algorithms, such as natu-
ral language processing (NLP), are increasingly acknowl-
edged as essential tools in the health sciences landscape
[18]. See Table 1 for a description of key Al terms used in
this paper. Their diverse applications range from predict-
ing disease outbreaks, enhancing medical imaging, and
refining patient communication via tools like chatbots to
influencing behavior changes at patient, staff, organiza-
tional, or even community levels. Over the last decade,
there has been a significant increase in the volume of sci-
entific literature integrating Al into health research [19,
20]. This research incorporates a broad spectrum of Al
models—from shallow ML algorithms, such as decision
trees and k-means clustering, to deep neural networks.
These Al models are applied to various data sources and
types, such as clinical and observational data and data
formats, including tabular, text, and images. The growth
of large-scale, diverse health data, coupled with the emer-
gence of new Al techniques, has led to significant change
in the healthcare sector, improving our capabilities in
diagnosis, disease prediction, patient care, and behav-
ior modification [19-23]. Al technologies also afford
opportunities to automate aspects of care delivery, qual-
ity improvement, and health services research processes
that previously required human labor and thereby can
increase speed and efficiency, including for implementa-
tion research and practice [24].

The potential of Al to enhance IS is evident, but there
are also cautions to consider, including Al’s potential to
exacerbate inequities if unchecked [25-28]. This paper
aims to elucidate how Al can address current IS chal-
lenges while also shedding light on its potential pitfalls.
We further provide specific examples from global health
systems, public health, and precision health to illustrate
both the advantages and precautions when integrating Al
with IS. We conclude by providing recommendations and
selected resources for implementation researchers and
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Table 1 Definitions of artificial intelligence terminology used
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Artificial intelligence term Definition

Artificial intelligence (Al)
from them

Machine learning (ML)
of complex tasks

Neural network

An umbrella term for computer software that mimics human cognition to perform complex tasks and learn
A subfield of Al that uses algorithms trained on data to produce adaptable models that can perform a variety

A machine learning technigque designed to resemble the human brain’s structure. Neural networks require large

data sets to perform calculations and create outputs, which enables features like speech and vision recognition

Shallow learning
Deep learning

Reinforcement learning (RL)
or penalized based on its actions

Natural language processing (NLP)

Usually refers to the classic machine learning approach in the absence of neural networks
A subset of machine learning that uses several layers that form neural networks
A type of machine learning in which an algorithm learns by interacting with its environment and is rewarded

A type of Al that enables computers to understand spoken and written human language. NLP enables features

like text and speech recognition on devices

Sentiment analysis

A systematic approach to understanding human language’s affective and subjective intent, includ-

ing whether data is positive, neutral, or negative

Decision trees

k-means clustering

A type of machine learning that uses a decision tree to make predictions
A type of machine learning which groups an unlabeled dataset into different clusters or categories

practitioners to leverage Al in their work. While there
are extant primers on Al in healthcare and research and
papers describing how IS can enhance AI [29-31], this
paper focuses on ways Al can address challenges spe-
cific to IS and offers tangible guidance tailored to the IS
community on how to apply Al to their work while being
cognizant of and mitigating potential unintended con-
sequences. We also discuss intellectual property rights
related to the use of AL

Main text

2A. Opportunities for integration of Al to optimize

IS methods

Here, we outline “why” Al should be used in the field of
IS by describing some of the key challenges facing IS as
well as tangible examples of how Al can help overcome
these challenges. The specific IS challenges addressed are
(1) speed, (2) sustainability, (3) equity, (4) generalizability,
(5) assessing context and context-outcome relationships,
and (6) assessing causality and mechanisms. Table 2 sum-
marizes these IS challenges and Al solutions. Table 3
provides examples from health systems and public health
settings describing how Al can address the limitations of
IS.

2A1.Speed as an IS challenge

Improving and measuring the speed of its methods and
translation is a critical issue for IS [17, 40, 41]. Despite
great promise and evolving methods to improve the
speed of certain activities, IS methods require time,
including time to conduct partner engagement, test
implementation strategies, evaluate outcomes, and col-
lect and analyze mixed methods data. The time required

to carry out traditional IS approaches can slow the speed
of knowledge generation and translation, which can be
expedited with Al For example, Al-enabled chatbots can
be trained to lead or moderate qualitative interviews or
focus groups, allowing for multiple sessions to be com-
pleted in parallel without the usual constraints of per-
sonnel available. There are examples of such chatbots
that are already being used in the business sector for job
candidate interviews [42], which could be adapted for
IS applications. NLP and more advanced forms of Al
can also be used to collect and analyze data inductively
or deductively, including the collection of unstructured
data that typically requires manual analysis of qualitative
data that is traditionally time-consuming and slow [43].
The use of Al to conduct qualitative analyses is becom-
ing more common, either as a standalone method or in
a “human-assisted” method where researchers iteratively
review the Al outputs and provide redirection as needed
[44—47]. Newer, rapid approaches to qualitative analysis
in IS have already sped up this step [48], but these newer
analysis methods could also be augmented with Al to
expedite or supplant person time by an order of magni-
tude. Notably, Al-enabled software is readily available to
assist with transcription [49]. Table 3 summarizes a study
that compared NLP to traditional qualitative methods
and found NLP was effective at identifying major themes
but was not as precise at more granular interpretations
[33]. Chatbots can also be used to automate the creation
and testing of tailored messaging as educational imple-
mentation strategies (e.g., behavioral nudges) for differ-
ent target groups of patients, staff, or settings based on
their unique characteristics to increase the speed of iden-
tifying contextually appropriate and effective strategies
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Table 3 Examples of how Al can address IS challenges in health systems and public health settings

IS challenge Al example

Speed

NLP was used for qualitative analysis coding and compared to a traditional, non-Al-enhanced approach. The

authors found that NLP can identify major themes, but that traditional approaches were best at identifying more

nuanced details [33]

Al-enhanced chatbots were designed to identify and address barriers to chronic medication adherence
with messages tailored to patient characteristics and needs [34]

Sustainability
thereby, improve sustainability [35]

Equity

Case study showed how Al can improve data analysis and improve the efficiency of clinical processes and,

Al-enhanced chatbots were created to provide culturally relevant education and support for new mothers
and to address health disparities [36]

Demonstrates how Al can be used to identify ongoing clinical trials that historically underrepresented patients

are eligible for [37]
Generalizability

Al was applied to social media data to identify adverse events and public sentiment associated with immuniza-

tions in a large and heterogeneous population [38]

Assessing context and context-
outcome relationships

Al was used to identify contextual reasons for clinician non-adherence to guideline-recommended practices,
including identification of previously unrecognized issues [38]

Al was used to predict coronary artery disease and quantify death risk using electronic health records

and genetic data [38]
Assessing causality and mechanisms

Describes how Al was used to create actionable and individualized causal treatment effect predictions

for patients with Alzheimer’s disease [39]

Al=artificial intelligence, IS=implementation science, NLP = natural language processing

[50]. Most examples of leveraging Al to accelerate speed
are currently outside the field of IS [42, 44—47].

2A2. Sustainability as an IS challenge

Sustainability is a central tenant of IS and ideally requires
iterative, ongoing progress assessments to identify inter-
vention components and implementation strategies
needing adaptation [51-54]. However, these ongoing
evaluation methods can tax available resources, particu-
larly human capital. By automating iterative evaluation
cycles, Al may reduce the demand for human resources,
which is often a bottleneck to sustainability methods. A
study conducted by the Regional Social Health Agency
in Italy (Table 3) demonstrates how Al can improve the
efficiency of using health information and promote the
sustainability of healthcare systems [35]. There are other
avenues in which Al can contribute to sustainability. For
instance, Al algorithms can be configured to continu-
ously monitor for and work in tandem with chatbots and
NLP tools to detect subtle changes in outcomes that are
difficult for traditional quantitative approaches to detect
within complex and big data sets used within healthcare.
These algorithms can provide partners with real-time
insights through integration with platforms like dash-
boards [55-57]. To date, there are examples of dash-
boards being used to make such sustainability methods
feasible for IS projects [58], but there are few examples
of Al-enabled approaches in the field of IS. Such use of
AI with dashboards can be particularly useful when rapid
decisions are required or when partners need to identify

and understand complex or subtle patterns in data over
time.

AT’s predictive analytics could also be employed to sim-
ulate or forecast the sustainability of certain initiatives
and estimate the long-term viability of a project or imple-
mentation strategy [59]. For example, if an intervention
is implemented in a healthcare setting, Al could analyze
data on adherence rates, participant feedback, and other
relevant metrics to project the likelihood of its continued
success. IS frameworks could guide the systematic assess-
ment of the complex and multilevel contextual factors
(e.g., culture, strategic priorities, burnout rates, turnover)
that influence sustainability which could be categorized
into themes and used as input or predictor variables
within the AI model. Such predictive capabilities could
allow for proactive and iterative adjustments through-
out the life of a project to maximize sustainability. This
approach could also assist in identifying the optimal allo-
cation of limited resources by knowing in advance which
areas might falter or by potentially supplanting the need
for a costly or time-consuming trial that is predicted to
be unsustainable. The use of Al to predict sustainability is
a potential future direction for the field of IS.

2A3. Equity as an IS challenge

IS aims to promote equity, but some equity-enhanc-
ing activities can be challenging within resource
constraints. Resources are often not available to (1)
disband language barriers to participation in partner
engagement activities and implementation studies; (2)
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create culturally appropriate implementation strategies
that address issues such as mistrust; or (3) offer data
that represent the spectrum of perspectives beyond the
usual, including that of persons who have historically
been marginalized and experienced disparities [60, 61].

IS can benefit from integrating Al to promote equity
amidst resource constraints. Al-driven translation tools
render text in different languages and can capture the
essence and nuances across dialects and regional vari-
ations. Further, speech-to-text systems can convert
spoken language into written form, facilitating partici-
pation for those who might be literate in their native
tongue but not in the primary language of a study.
For immediate interactions, real-time Al-enhanced
software interpretation allows non-native speakers to
understand and contribute actively. AI chatbots, tai-
lored using user data and historical contexts, can reso-
nate with local customs and beliefs, offering a culturally
attuned interaction [62, 63]. Additionally, these AI sys-
tems can be trained to transparently provide resources
that resonate with targeted communities and can be
employed for cultural awareness training, ensuring
researchers approach communities with heightened
sensitivity [62, 63]. In terms of data, Al algorithms can
increase diverse representation by pulling from a range
of sources, inclusive of historically marginalized voices
that are often omitted from traditional datasets because
the data are in unstructured formats and/or too large
and complex for traditional analytic methods [9].

In Table 3, we present an example of proactively using
Al to identify clinical trials for patients from histori-
cally underrepresented populations [37]. These Al tools
can also be configured to detect and rectify inherent
biases in datasets and present complex data visually,
aiding in identifying and correcting disparities. For
recruitment, Al’s ability to analyze complex population
data from diverse sources means that underrepresented
groups can be pinpointed for more inclusive outreach
[64]. Data sources could include social media plat-
forms, online community forums, or leverage crowd-
sourcing techniques. Al-driven tools such as voice
assistants and adaptive interfaces could also be used
to make research platforms more navigable for those
with disabilities or language barriers [65]. Finally, Al's
feedback mechanisms enable real-time adjustments to
implementation strategies based on participant input,
and sentiment analysis tools can gauge the emotional
underpinnings of this feedback, illuminating areas of
potential mistrust or dissatisfaction [66]. In harness-
ing these Al capabilities, IS can promote equity more
effectively, ensuring historically marginalized commu-
nities are actively engaged in research and its applica-
tions. The use of Al to promote equity remains largely
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untapped, with most examples outside the field of IS
(60, 61, 64—66].

2AA4. Generalizability as an IS challenge
Although IS prioritizes generalizability and transport-
ability [67], limitations of data and human resources to
conduct partner and participant engagement and col-
lect data can threaten generalizability. Generalizability
decreases if the breadth of perspectives considered is lim-
ited when designing, implementing, or evaluating a study
[68]. While AT’s role in easing resource demands through
chatbots and NLP has been acknowledged, AI's poten-
tial to enhance generalizability stretches beyond that.
Because Al can sift through large amounts of complex
data, it can incorporate insights from non-traditional
sources. For example, social media platforms, with user-
generated content, can provide rich insights into public
sentiment, behavior, and preferences, which increases the
representation of perspectives and assists in generaliz-
ing findings across diverse populations [69]. The United
Kingdom has applied AI to Twitter and Facebook forums
to evaluate adverse reactions and understand public sen-
timent toward the COVID-19 vaccination and found that
common and rare adverse effects were discussed with
relatively equal frequency and that vaccine perceptions
were largely positive over time (Table 3) [70]. Addition-
ally, Al can use crowdsourcing to increase the represen-
tation of diverse perspectives [71, 72]. Crowdsourcing
has the potential to capture diverse insights from global
audiences. Al has been used to coordinate and process
data from large, crowdsourced projects, ensuring that
perspectives are drawn from a cross-section of diverse
individuals [73]. This means that studies can encompass
views from varied geographical locations, socio-eco-
nomic statuses, and cultural backgrounds while operating
within existing resource confines [74]. As is also the case
with traditional data sources, the selection of an appro-
priate social media or crowdsourcing data source must
be aligned with the target population or issue at hand
to ensure relevance, and inherent data biases, including
misinformation and missingness must be considered.
Moreover, the dynamic nature of the world means that
generalizability is not static. Populations evolve, cultures
shift, and societal priorities change. Here, Al can assist by
automating continuous assessments of generalizability.
Similar to approaches described above related to sustain-
ability, AI can monitor for changes that might impact the
external relevance or transportability of study findings
and provide alerts or updates when shifts are detected.
Such iterative assessments, automated by Al, can be used
to strategically guide adaptations such that the work and
findings remain generalizable throughout all stages of a
study and over time [57, 60, 61].
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2A5. Assessing context and context-outcome relationships
as an IS challenge

Traditional IS approaches to assessing context and out-
comes are often limited to the “stated” or simple inter-
pretations of the “realized” While the stated (explicit
declarations) often come from qualitative methods like
partner engagement sessions or surveys with limited
samples, the realized is generally garnered from quantita-
tive data necessitating a predefined hypothesis or signal
[75]. Although emergent configurational analysis tech-
niques delve deeper into intricate relationships between
context and outcomes [76], IS and traditional quantita-
tive approaches often fall short of capturing the intricate
relationships of non-linear interactions. Al algorithms
present new opportunities to address these challenges
that are often inherent in complex data. Al can assimilate
large and complex data repositories to discern non-linear
relationships and detect patterns or context—implemen-
tation strategy—outcome relationships even without
predefined signals [77-79]. One study leveraged Al and
electronic health record data to understand reasons for
gaps in clinician prescribing for a clinical scenario that
had already been well studied using traditional mixed
methods [75]. This study identified a variety of contex-
tual determinants, including some that were previously
unrecognized and were used to inform the design of
an ongoing IS trial (Table 3) [75]. The versatility of Al
means that these algorithms are not only static tools, but
that they can be optimized to constantly operate in the
background, evolving with the data they encounter. This
becomes particularly crucial in dynamic landscapes such
as healthcare, where relationships between context and
outcomes can change rapidly. As Al iteratively processes
this information, it can provide a pulse on any emerging
shifts, ensuring that IS remains responsive and adaptive
to the changing context. While there are limited exam-
ples of Al being used to assess context for IS studies [75],
there are additional avenues in which to explore how Al
can be leveraged to assess changes in context, strategies,
and outcomes.

2A6. Assessing causality and mechanism as an IS challenge
In IS, ascertaining causality and mechanism is difficult.
While traditional quantitative tests for causality could
assist [80, 81], as could more qualitative approaches
such as mechanism mapping [82], deciphering the
direct causal connections, rather than mere associative
links, between interventions, implementation strategies,
and outcomes, is difficult due to the complex interplay
of confounding variables in real-world settings. Mod-
ern Al-driven causal inference and discovery mecha-
nisms offer a path forward for IS [83-85]. Leveraging
structured graphical models, techniques such as causal
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Bayesian networks adeptly delineate explicit cause-and-
effect relationships, duly accounting for latent confound-
ers. Consider, for example, a healthcare scenario aimed
at curtailing hospital readmissions. Whereas traditional
analytical frameworks might predominantly identify an
associative link between an intervention and reduced
readmissions, Al causal tools probe deeper, scrutinizing
whether the intervention itself was the direct catalyst or
if obscured variables intervened. In Table 3, we provide
a precision health example of using causal AI methods to
generate treatment predictions for patients with demen-
tia [39]. Further enriching the Al toolkit are counterfac-
tual neural networks [86, 87], which could be used by
IS practitioners to simulate hypothetical outcomes that
would have occurred without specific interventions.
Another notable advancement is Al's deployment in ana-
lyzing potential or simulated outcomes, which elucidates
the individual treatment effect, thereby shedding light on
the distinct impact of interventions or implementation
strategies on specific demographic or clinical subgroups.
Such Al-based simulation models have the potential to
save unnecessary resource expenditure (time, money) if
a trial is predicted to produce a null effect. Through this
Al-driven lens, IS could better assess causality and mech-
anism with heightened precision, fostering the design
and deployment of increasingly effective and equitable
programs. The use of Al to assess causality and mecha-

nism is a largely unexplored methodologic area for the
field of IS.

2B. Potential consequences of using Al in IS
The consequences of using Al can be both positive and
negative. Thus far we have focused on those positive con-
sequences that can be anticipated, but there are likely
others that are unanticipated. For example, it is not yet
known what the true potential of Al is, and Al-generated
innovations could create solutions with benefits we can-
not begin to predict. However, when using Al, important
considerations and potential adverse unintended conse-
quences need to be monitored and minimized [25-28].
Here we highlight potential cautions of using Al with
examples of how Al has caused harm or gone awry. In
Table 2, we explicitly relate these Al concerns with the
Al solutions proposed above to address IS challenges.
Across all of these counterarguments, proactive vigilance
is required to identify and mitigate issues at each stage of
the Al lifecycle, which includes (1) data creation, (2) data
acquisition, (3) model development, (4) model evalua-
tion, and (5) model deployment [88]. We provide exam-
ples showing how Al can lead to erroneous conclusions,
inequities, biases, or harmful behaviors.

Unmonitored Al applications (e.g., Al algorithms, chat-
bots, NLP) can lead to erroneous messages or results. Al
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is restricted to the available data inputs and subject to all
the biases of the data collection process, often referred to
as “garbage in, garbage out” For example, it is known that
clinician diagnoses are biased by gender and race [25, 26],
and models using such data will capture these biases. AI’s
sentiment analysis can also incorrectly interpret data or
be influenced more by counts or frequencies than a man-
ual human-only process would be, and such errors can
significantly influence results [43]. These issues can be
hidden or exacerbated when using “black box” AI models
that result in an effect or outcome but do not allow for
explainability of the processes that produced the effect
[89].

In one study, an Al algorithm was applied to 14,199
patients with pneumonia across 78 hospitals to risk-
stratify the probability of death [90]. The model
recommended that patients with asthma were at
lower risk than those without asthma. This recom-
mendation contrasted with existing evidence, thus
triggering the researchers to investigate further. The
researchers discovered that the data inputs biased
this finding. Specifically, the data inputs did not
capture the fact that patients with asthma and
pneumonia were commonly directly admitted for
treatment and thus had better treatment outcomes
compared to patients who had pneumonia without
asthma.

AT also has the potential to exacerbate or create new
inequities. Reliance on data that underrepresent the
population or that are subject to inherent biases stem-
ming from sexism, racism, classism, or mistrust leads
to inaccurate predictions or evaluations and could per-
petuate inequities or misguide decision-making [26—-28].
Misguided decision-making can be particularly apparent
when Al is used to inform recommendations for tools
such as clinical decision support within electronic health
records.

Authors of another paper provide a use case of Al
algorithms scheduling medical appointments to
improve scheduling efficiency to illustrate how such
Al algorithms can yield racially biased outcomes
[91]. Such algorithms consider many factors, such
as characteristics of patients that arrive late to
appointments or “no show.” However, historically,
Black patients have a higher likelihood of “no shows’;
thus, the algorithm scheduled these patients into less
desirable appointment times.

Al is beholden to the data inputs. Beyond inherent
biases of how data are collected, data inputs are also
subject to data drift (e.g., temporal changes in how and
where data is documented) and can also lead to biased
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interpretations if the sample sizes are not representative
or sufficiently large [92]. Traditional IS data sources have
limited sample sizes, and data drift is common in rapidly
changing environments where public health and health-
care happen.

In 2009 it was announced that by using Al applica-
tions and publicly available data from Google search
engine queries for “flu-like symptoms,” researchers
could predict regional flu trends 1-2 weeks earlier
than the Centers for Disease Control and Preven-
tion [93]. Later, it was discovered that the prediction
was no longer accurate, in part because of changes
to search engines that prompted or suggested certain
search terms to users, which changed the data inputs

[94].

Al can tailor messages or nudges for specific popula-
tions in ways that prompt and facilitate good decision-
making [95, 96]. However, such Al applications can also
inadvertently promote harmful behaviors. For example,
Al has been leveraged to create tailored messages or
nudges to increase consumer uptake of unhealthy food
and beverages [97]. Al can learn and adapt its messag-
ing over time, thus posing the potential for messages
originally well-intended to encourage inadvertent harm.
Other ethical implications of nudges include situations
in which certain options are forbidden and autonomy in
decision-making is impaired [98—100].

2c. Intellectual property rights of using Al for IS

Intellectual property issues present unique challenges and
opportunities when Al is used in IS for design, data anal-
ysis, or reporting [101]. Questions arise about property
rights of the knowledge generated from Al models, espe-
cially when the knowledge generated stems from data in
which it is unclear who owns the data. For example, Al
models could leverage data sourced from public datasets
or collaborative efforts in which ownership of the data is
unclear. Furthermore, as Al aids in creating or optimiz-
ing interventions, discerning the boundaries between
human-generated property and machine-augmented
contributions can become ambiguous. It is imperative
for researchers and practitioners to proactively navigate
these complexities, ensuring that while Al propels IS for-
ward, it does so in a manner that respects and delineates
intellectual property rights and contributions.

If relying on existing Al applications, it is important to
identify and understand any potential intellectual prop-
erty rights, which could require fees for use or restric-
tions on how the AI can be used or disseminated. On
the flip side, if creating de novo Al applications, it may
be prudent to consider establishing intellectual property
rights to enforce responsible use and avoid the potential
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consequences outlined above. Intellectual property rights
apply to any invention, such as EHR-based tools and
decision aids, but in the case of Al intentional use to pro-
mote responsible Al use may be novel and important to
consider. While there are clear implications of intellectual
property rights for Al applications themselves, there is
less clarity regarding the property rights of Al-generated
products [102, 103]. The latter is a new and developing
area that is currently handled on a country-by-country
basis. Although allowable under the laws of some coun-
tries such as the UK, the US stance is that Al-generated
products are prohibited from intellectual property rights
[103]. The fundamental question that served as the basis
for the US’s decision was “How can a thing (not a human)
own property?” The inability to predict or anticipate AI-
generated products confounded by limited means of reg-
ulation is cause for increased caution and monitoring.

Discussion and future directions
IS and AI can complement each other and have the
potential to work together to increase the speed of sus-
tainable and equitable knowledge generation and trans-
lation to enhance healthcare and population health.
We have focused on how AI can augment specific bot-
tlenecks faced by the field of IS, while others have called
attention to ways in which IS can augment AI, which
includes making AI more relevant to local settings, scal-
able, and sustainable [29-31]. In summary, key ways Al
can help address IS-specific challenges include: increas-
ing the speed with which data can be collected, analyzed,
and acted on; automating and reducing the workforce
required to conduct partner engagement and other IS
methods; expanding the size and heterogeneity of avail-
able data sources and participant recruitment; and
increasing access to new methods to assist in discovering
contextual influences and complex interactions between
context, implementation strategies and outcomes. Focus-
ing solely on Al’s potential to automate many of IS’s tradi-
tional methods and processes, Al provides a path to help
IS researchers and practitioners become more rapid and
achieve goals of sustainability, equity, and generalizability.
Al presents new opportunities for IS and many
potential AI applications remain largely unexplored or
untapped by the IS community. As Al use assuredly
increases, it needs to be monitored and used responsi-
bly to avoid unintended consequences, especially in the
face of limited regulations on Al It is also important to
note that the benefits and pitfalls of AI may not equally
apply to all types of Al and it is beyond the scope of this
paper to address each separately, but the reader should
keep in mind that there are differences based on the spe-
cific AI model and application. Among Al’s potential to
cause harm, inequities have received much attention and
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may be one of the most challenging issues to monitor and
mitigate. Inequities can surface over time, and multiple
root causes include biased data inputs or data that do
not represent the spectrum of cultures or perspectives.
In this paper, we describe ways Al can optimize equity,
but every use of Al also requires careful and ongoing
vigilance for potential effects on inequities. Other poten-
tial pitfalls of Al discussed above include inaccurate pre-
dictions, recommendations, or interpretations of data.
Another key challenge of Al is its algorithms’ reproduc-
ibility or “brittleness” across settings and over time [104].
There is a need for the regulations, frameworks, and
guidance currently being developed for AI [105, 106] to
include policies and procedures for systematic and pro-
active monitoring of unintended consequences and care-
ful consideration of “black box” models [89]. With the
widespread update and examination of ChatGPT (and
other Al online and related tools), there is increasing
awareness about Als potential for errors [107-109]. The
full potential of using Al to enhance IS is not yet known,
nor is its potential for errors and harm, which makes the
development of regulations even more challenging [101].

IS should take full advantage of AIs benefits while
being mindful of its pitfalls. To do so, a transdisciplinary
team science approach is optimal. Team science certainly
extends beyond AI and IS partnering, but we focus on
these two fields here. Historically, the fields of Al and IS
have had limited collaboration with different foci (e.g.,
heavily quantitative and causal versus mixed methods and
pragmatic effectiveness). Now as each becomes essen-
tial to the vision of precision public health and learning
health systems [7, 110—115], they are progressively realiz-
ing the value of each other. Given both are rapidly evolv-
ing fields and that it is hard to anticipate what is new or
next, close collaboration or perhaps a new generation of
cross-trained scientists is needed. Such cross-trained sci-
entists may be particularly adept at keeping pace with the
latest discoveries related to Al's potential and monitoring
for and mitigating unanticipated consequences. To foster
this budding partnership or cross-training between IS
and Al accessibility of expertise and resources is impor-
tant. In Table 4, we provide a select sample of resources
and tools to facilitate the use of Al especially relevant for
IS.

Conclusions

We call for increased uptake of innovations in Al through
transdisciplinary collaboration to overcome challenges to
IS methods and to enhance public health and healthcare
while remaining vigilant of potential unintended conse-
quences. We acknowledge that our paper is “first genera-
tion” in that it is one of the first to describe intersections
between Al and IS—in doing so, we hope to spark future



Trinkley et al. Implementation Science (2024) 19:17

Page 11 of 15

Table 4 Select resources and key references especially relevant for IS to learn about artificial intelligence

Resource

Description (and costs)

RapidMiner
https://rapidminer.com

Tableau
https://www.tableau.com

ChatGPT
https://chat.openai.com

Example Data Science Training Programs:

https://ischoolonline berkeley.edu/data-science/
https://brownschool.wustl.edu/academics/aibda-certificate/
https://brownschool.wustl.edu/resources-initiatives/advanced-learning-
certificate/artificial-intelligence-applications-for-health-data/
https://catalog.ucdenver.edu/cu-anschutz/schools-colleges-programs/
graduate-school/graduate-school-certificates/biomedical-data-science-
certificate/

Coursera
https://www.coursera.org/collections/best-machine-learning-ai

You Look Like a Thing and | Love You: How Artificial Intelligence Works
and Why It's Making the World a Weirder Place[116]

Journal articles providing guidance on NLP for qualitative analysis:
Chang T, DeJonckheere M, Vydiswaran VGV, et al.. Accelerating mixed
methods research with natural language processing of big text data. J
Mix Methods Res 2021;15:398-412 [117]

Lennon RP, Fraleigh R, Van Scoy LJ, Keshaviah A, Hu XC, Snyder BL, Miller
EL, Calo WA, Zgierska AE, Griffin C. Developing and testing an automated
qualitative assistant (AQUA) to support qualitative analysis. Fam Med
Community Health. 2021 Nov;9(Suppl 1):2001287 [118]

A data science platform that aims to simplify Al for users, including those
without coding experience
Requires paid subscription, but may be offered through institutional licenses

A data visualization platform that includes native Al software that can be
applied to data stored within
Requires paid subscription, but may be offered through institutional licenses

An Al-driven chatbot that responds to user prompts. Examples of responses
to prompts can include drafts of medical necessity letters, manuscripts,

and data visualizations (graphs, tables). There are different versions of Chat-
GPT and similar tools of varying sophistication and accuracy

Free versions are available

Many academic universities offer graduate degrees, certificates, or boot
camp-type programs in data science and other areas that provide Al train-
ing for diverse audiences

There is a cost

Offers many online courses and programs in data science, Al, and different
focus areas of Al
There is a cost but may be offered through institutional licenses

A lighthearted easy-to-read book for those with some or no baseline knowl-
edge of Al. The author uses practical examples to illustrate how Al works
and its limitations without going into technical details or jargon

There is a cost to purchasing the audio or text

lllustrative examples and recommendations for how NLP can be used

for rapid qualitative analysis

There is a cost to some of the papers, but some may be free through institutional
licenses or open access

Al artificial intelligence

debate, scholarship, and enhancement of the concepts
we have introduced. In Table 5, we provide concrete
summary suggestions of how to begin to responsibly
and optimally use Al including building a representa-
tive team. Application of Al is complex and uncertain,

but has the potential to make IS more efficient and can
facilitate more in-depth and iterative contextual assess-
ment, which in turn can lead to more rapid, sustainable,
equitable, and generalizable generation and translation of
knowledge into real-world settings.

Table 5 Recommendations to responsibly and optimally use Al in implementation research

Build effective transdisciplinary teams

That includes Al and IS expertise and representation of other perspectives, including other expertise,

patients, community members, caregivers, staff

Have a creative mindset
Be audacious, humble, and persistent

Insist on and monitor equity
of outcomes

“Fail early, fail often, but always fail forward"®

Conduct rapid learning
affecting their integration

Al presents a new opportunity to innovate. Think and act creatively while being cautious of pitfalls

Explore the potential of Al while anticipating things might go wrong and planning for iterations to check
your work and correct course

Evaluate and advocate for the representation of perspectives and datasets as well as representativeness

Be iterative to improve, including sustainability and equity
Al'and IS are changing rapidly. Establish a process for staying up-to-date on the latest developments

Al artificial intelligence, IS implementation science
2 Quotation attributed to John C. Maxwell
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Abbreviations

Al Artificial intelligence

DL Deep learning

D&l Dissemination and implementation
EBI Evidence-based intervention

IS Implementation science

ML Machine learning

NLP Natural language processing

RL Reinforcement learning

TMFs  Theories, models, and frameworks
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