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Abstract 

Background The field of implementation science was developed to address the significant time delay 
between establishing an evidence-based practice and its widespread use. Although implementation science 
has contributed much toward bridging this gap, the evidence-to-practice chasm remains a challenge. There are 
some key aspects of implementation science in which advances are needed, including speed and assessing causality 
and mechanisms. The increasing availability of artificial intelligence applications offers opportunities to help address 
specific issues faced by the field of implementation science and expand its methods.

Main text This paper discusses the many ways artificial intelligence can address key challenges in applying imple-
mentation science methods while also considering potential pitfalls to the use of artificial intelligence. We answer 
the questions of “why” the field of implementation science should consider artificial intelligence, for “what” (the pur-
pose and methods), and the “what” (consequences and challenges). We describe specific ways artificial intelligence 
can address implementation science challenges related to (1) speed, (2) sustainability, (3) equity, (4) generalizability, 
(5) assessing context and context-outcome relationships, and (6) assessing causality and mechanisms. Examples are 
provided from global health systems, public health, and precision health that illustrate both potential advantages 
and hazards of integrating artificial intelligence applications into implementation science methods. We conclude 
by providing recommendations and resources for implementation researchers and practitioners to leverage artificial 
intelligence in their work responsibly.

Conclusions Artificial intelligence holds promise to advance implementation science methods (“why”) and acceler-
ate its goals of closing the evidence-to-practice gap (“purpose”). However, evaluation of artificial intelligence’s poten-
tial unintended consequences must be considered and proactively monitored. Given the technical nature of artificial 
intelligence applications as well as their potential impact on the field, transdisciplinary collaboration is needed 
and may suggest the need for a subset of implementation scientists cross-trained in both fields to ensure artificial 
intelligence is used optimally and ethically.
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Contributions to the literature

• Artificial intelligence may be integrated into implemen-
tation science research and practice to enhance speed, 
sustainability, equity, and generalizability as well as the 
ability to assess context, context-outcome relation-
ships, and causality. We highlight ways artificial intel-
ligence can complement implementation science meth-
ods and provide examples.

• Using artificial intelligence with implementation sci-
ence methods can also present new challenges and 
unintended consequences. We describe the potential 
pitfalls of using artificial intelligence, along with exam-
ples.

• We offer recommendations and resources on how to 
begin to responsibly integrate artificial intelligence into 
implementation science methods, including transdisci-
plinary collaboration and proactive monitoring for and 
mitigation of potential unintended consequences.

Background
Healthy People 2030 vision calls for a “society in which all 
people can achieve their full potential for health and well-
being” [1]. This vision is aspirational and leaves much to 
be done. Among high-income countries, the average 
number of annual deaths that could be avoided altogether 
with preventive or treatment strategies ranges from 130 
to more than 330 per 100,000 people [2]. Although the 
lag time from knowledge generation to translation varies 
by situation, recent estimates suggest the average time is 
15 years, which is a modest improvement from prior esti-
mates [3, 4]. To move the needle and make real progress 
toward this vision, we need to do better faster, which 
includes producing and sustaining equitable results. We 
need more rapid knowledge generation and translation 
done in replicable, equitable, sustainable, locally relevant, 
and externally valid ways [5, 6]. Implementation science 
(IS) can play a key role in translating evidence into prac-
tice and policy.

IS methods and approaches can drive improvements 
in equity, sustainability, and the balance between local 
relevance and external validity needed to support trans-
lational science. When used by learning health systems 
or, more generally, in healthcare or public health settings, 
IS can iteratively support the continuum of knowledge 
generation to translation in many ways [7]. IS specifically 
focuses on feasibility and relevance to the local context 
while also considering principles of designing for dissem-
ination, sustainability, and equity [8]. Importantly, equity 
is considered at each step in the continuum of knowl-
edge generation to translation and promoted through the 

representation of partner perspectives and representa-
tiveness of outcomes [9–16]. However, IS has several lim-
itations and challenges, notably the time and resources 
required to apply its methods and approaches. Such con-
straints can lead to reduced frequency, sample sizes, or 
representation of partner engagement and hamper other 
methods commonly used to assess context and outcomes 
[17]. Such limitations can dampen the potential for IS to 
enhance reach, equity, sustainability, and generalizability 
and ultimately impede its ability to close the evidence-to-
practice gap.

As artificial intelligence (AI) gains prominence in the 
public health and healthcare sectors, it provides avenues 
to address some of the challenges to IS. AI algorithms 
such as machine learning (ML), deep learning (DL), and 
reinforcement learning (RL) serve as the foundation. 
Domain applications of these algorithms, such as natu-
ral language processing (NLP), are increasingly acknowl-
edged as essential tools in the health sciences landscape 
[18]. See Table 1 for a description of key AI terms used in 
this paper. Their diverse applications range from predict-
ing disease outbreaks, enhancing medical imaging, and 
refining patient communication via tools like chatbots to 
influencing behavior changes at patient, staff, organiza-
tional, or even community levels. Over the last decade, 
there has been a significant increase in the volume of sci-
entific literature integrating AI into health research [19, 
20]. This research incorporates a broad spectrum of AI 
models—from shallow ML algorithms, such as decision 
trees and k-means clustering, to deep neural networks. 
These AI models are applied to various data sources and 
types, such as clinical and observational data and data 
formats, including tabular, text, and images. The growth 
of large-scale, diverse health data, coupled with the emer-
gence of new AI techniques, has led to significant change 
in the healthcare sector, improving our capabilities in 
diagnosis, disease prediction, patient care, and behav-
ior modification [19–23]. AI technologies also afford 
opportunities to automate aspects of care delivery, qual-
ity improvement, and health services research processes 
that previously required human labor and thereby can 
increase speed and efficiency, including for implementa-
tion research and practice [24].

The potential of AI to enhance IS is evident, but there 
are also cautions to consider, including AI’s potential to 
exacerbate inequities if unchecked [25–28]. This paper 
aims to elucidate how AI can address current IS chal-
lenges while also shedding light on its potential pitfalls. 
We further provide specific examples from global health 
systems, public health, and precision health to illustrate 
both the advantages and precautions when integrating AI 
with IS. We conclude by providing recommendations and 
selected resources for implementation researchers and 
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practitioners to leverage AI in their work. While there 
are extant primers on AI in healthcare and research and 
papers describing how IS can enhance AI [29–31], this 
paper focuses on ways AI can address challenges spe-
cific to IS and offers tangible guidance tailored to the IS 
community on how to apply AI to their work while being 
cognizant of and mitigating potential unintended con-
sequences. We also discuss intellectual property rights 
related to the use of AI.

Main text
2A. Opportunities for integration of AI to optimize 
IS methods
Here, we outline “why” AI should be used in the field of 
IS by describing some of the key challenges facing IS as 
well as tangible examples of how AI can help overcome 
these challenges. The specific IS challenges addressed are 
(1) speed, (2) sustainability, (3) equity, (4) generalizability, 
(5) assessing context and context-outcome relationships, 
and (6) assessing causality and mechanisms. Table 2 sum-
marizes these IS challenges and AI solutions. Table  3 
provides examples from health systems and public health 
settings describing how AI can address the limitations of 
IS.

2A1. Speed as an IS challenge
Improving and measuring the speed of its methods and 
translation is a critical issue for IS [17, 40, 41]. Despite 
great promise and evolving methods to improve the 
speed of certain activities, IS methods require time, 
including time to conduct partner engagement, test 
implementation strategies, evaluate outcomes, and col-
lect and analyze mixed methods data. The time required 

to carry out traditional IS approaches can slow the speed 
of knowledge generation and translation, which can be 
expedited with AI. For example, AI-enabled chatbots can 
be trained to lead or moderate qualitative interviews or 
focus groups, allowing for multiple sessions to be com-
pleted in parallel without the usual constraints of per-
sonnel available. There are examples of such chatbots 
that are already being used in the business sector for job 
candidate interviews [42], which could be adapted for 
IS applications. NLP and more advanced forms of AI 
can also be used to collect and analyze data inductively 
or deductively, including the collection of unstructured 
data that typically requires manual analysis of qualitative 
data that is traditionally time-consuming and slow [43]. 
The use of AI to conduct qualitative analyses is becom-
ing more common, either as a standalone method or in 
a “human-assisted” method where researchers iteratively 
review the AI outputs and provide redirection as needed 
[44–47]. Newer, rapid approaches to qualitative analysis 
in IS have already sped up this step [48], but these newer 
analysis methods could also be augmented with AI to 
expedite or supplant person time by an order of magni-
tude. Notably, AI-enabled software is readily available to 
assist with transcription [49]. Table 3 summarizes a study 
that compared NLP to traditional qualitative methods 
and found NLP was effective at identifying major themes 
but was not as precise at more granular interpretations 
[33]. Chatbots can also be used to automate the creation 
and testing of tailored messaging as educational imple-
mentation strategies (e.g., behavioral nudges) for differ-
ent target groups of patients, staff, or settings based on 
their unique characteristics to increase the speed of iden-
tifying contextually appropriate and effective strategies 

Table 1 Definitions of artificial intelligence terminology used

Artificial intelligence term Definition

Artificial intelligence (AI) An umbrella term for computer software that mimics human cognition to perform complex tasks and learn 
from them

Machine learning (ML) A subfield of AI that uses algorithms trained on data to produce adaptable models that can perform a variety 
of complex tasks

Neural network A machine learning technique designed to resemble the human brain’s structure. Neural networks require large 
data sets to perform calculations and create outputs, which enables features like speech and vision recognition

Shallow learning Usually refers to the classic machine learning approach in the absence of neural networks

Deep learning A subset of machine learning that uses several layers that form neural networks

Reinforcement learning (RL) A type of machine learning in which an algorithm learns by interacting with its environment and is rewarded 
or penalized based on its actions

Natural language processing (NLP) A type of AI that enables computers to understand spoken and written human language. NLP enables features 
like text and speech recognition on devices

Sentiment analysis A systematic approach to understanding human language’s affective and subjective intent, includ-
ing whether data is positive, neutral, or negative

Decision trees A type of machine learning that uses a decision tree to make predictions

k-means clustering A type of machine learning which groups an unlabeled dataset into different clusters or categories
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[50]. Most examples of leveraging AI to accelerate speed 
are currently outside the field of IS [42, 44–47].

2A2. Sustainability as an IS challenge
Sustainability is a central tenant of IS and ideally requires 
iterative, ongoing progress assessments to identify inter-
vention components and implementation strategies 
needing adaptation [51–54]. However, these ongoing 
evaluation methods can tax available resources, particu-
larly human capital. By automating iterative evaluation 
cycles, AI may reduce the demand for human resources, 
which is often a bottleneck to sustainability methods. A 
study conducted by the Regional Social Health Agency 
in Italy (Table 3) demonstrates how AI can improve the 
efficiency of using health information and promote the 
sustainability of healthcare systems [35]. There are other 
avenues in which AI can contribute to sustainability. For 
instance, AI algorithms can be configured to continu-
ously monitor for and work in tandem with chatbots and 
NLP tools to detect subtle changes in outcomes that are 
difficult for traditional quantitative approaches to detect 
within complex and big data sets used within healthcare. 
These algorithms can provide partners with real-time 
insights through integration with platforms like dash-
boards [55–57]. To date, there are examples of dash-
boards being used to make such sustainability methods 
feasible for IS projects [58], but there are few examples 
of AI-enabled approaches in the field of IS. Such use of 
AI with dashboards can be particularly useful when rapid 
decisions are required or when partners need to identify 

and understand complex or subtle patterns in data over 
time.

AI’s predictive analytics could also be employed to sim-
ulate or forecast the sustainability of certain initiatives 
and estimate the long-term viability of a project or imple-
mentation strategy [59]. For example, if an intervention 
is implemented in a healthcare setting, AI could analyze 
data on adherence rates, participant feedback, and other 
relevant metrics to project the likelihood of its continued 
success. IS frameworks could guide the systematic assess-
ment of the complex and multilevel contextual factors 
(e.g., culture, strategic priorities, burnout rates, turnover) 
that influence sustainability which could be categorized 
into themes and used as input or predictor variables 
within the AI model. Such predictive capabilities could 
allow for proactive and iterative adjustments through-
out the life of a project to maximize sustainability. This 
approach could also assist in identifying the optimal allo-
cation of limited resources by knowing in advance which 
areas might falter or by potentially supplanting the need 
for a costly or time-consuming trial that is predicted to 
be unsustainable. The use of AI to predict sustainability is 
a potential future direction for the field of IS.

2A3. Equity as an IS challenge
IS aims to promote equity, but some equity-enhanc-
ing activities can be challenging within resource 
constraints. Resources are often not available to (1) 
disband language barriers to participation in partner 
engagement activities and implementation studies; (2) 

Table 3 Examples of how AI can address IS challenges in health systems and public health settings

AI = artificial intelligence, IS = implementation science, NLP = natural language processing

IS challenge AI example

Speed NLP was used for qualitative analysis coding and compared to a traditional, non-AI-enhanced approach. The 
authors found that NLP can identify major themes, but that traditional approaches were best at identifying more 
nuanced details [33]

AI-enhanced chatbots were designed to identify and address barriers to chronic medication adherence 
with messages tailored to patient characteristics and needs [34]

Sustainability Case study showed how AI can improve data analysis and improve the efficiency of clinical processes and, 
thereby, improve sustainability [35]

Equity AI-enhanced chatbots were created to provide culturally relevant education and support for new mothers 
and to address health disparities [36]

Demonstrates how AI can be used to identify ongoing clinical trials that historically underrepresented patients 
are eligible for [37]

Generalizability AI was applied to social media data to identify adverse events and public sentiment associated with immuniza-
tions in a large and heterogeneous population [38]

Assessing context and context-
outcome relationships

AI was used to identify contextual reasons for clinician non-adherence to guideline-recommended practices, 
including identification of previously unrecognized issues [38]

AI was used to predict coronary artery disease and quantify death risk using electronic health records 
and genetic data [38]

Assessing causality and mechanisms Describes how AI was used to create actionable and individualized causal treatment effect predictions 
for patients with Alzheimer’s disease [39]
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create culturally appropriate implementation strategies 
that address issues such as mistrust; or (3) offer data 
that represent the spectrum of perspectives beyond the 
usual, including that of persons who have historically 
been marginalized and experienced disparities [60, 61].

IS can benefit from integrating AI to promote equity 
amidst resource constraints. AI-driven translation tools 
render text in different languages and can capture the 
essence and nuances across dialects and regional vari-
ations. Further, speech-to-text systems can convert 
spoken language into written form, facilitating partici-
pation for those who might be literate in their native 
tongue but not in the primary language of a study. 
For immediate interactions, real-time AI-enhanced 
software interpretation allows non-native speakers to 
understand and contribute actively. AI chatbots, tai-
lored using user data and historical contexts, can reso-
nate with local customs and beliefs, offering a culturally 
attuned interaction [62, 63]. Additionally, these AI sys-
tems can be trained to transparently provide resources 
that resonate with targeted communities and can be 
employed for cultural awareness training, ensuring 
researchers approach communities with heightened 
sensitivity [62, 63]. In terms of data, AI algorithms can 
increase diverse representation by pulling from a range 
of sources, inclusive of historically marginalized voices 
that are often omitted from traditional datasets because 
the data are in unstructured formats and/or too large 
and complex for traditional analytic methods [9].

In Table 3, we present an example of proactively using 
AI to identify clinical trials for patients from histori-
cally underrepresented populations [37]. These AI tools 
can also be configured to detect and rectify inherent 
biases in datasets and present complex data visually, 
aiding in identifying and correcting disparities. For 
recruitment, AI’s ability to analyze complex population 
data from diverse sources means that underrepresented 
groups can be pinpointed for more inclusive outreach 
[64]. Data sources could include social media plat-
forms, online community forums, or leverage crowd-
sourcing techniques. AI-driven tools such as voice 
assistants and adaptive interfaces could also be used 
to make research platforms more navigable for those 
with disabilities or language barriers [65]. Finally, AI’s 
feedback mechanisms enable real-time adjustments to 
implementation strategies based on participant input, 
and sentiment analysis tools can gauge the emotional 
underpinnings of this feedback, illuminating areas of 
potential mistrust or dissatisfaction [66]. In harness-
ing these AI capabilities, IS can promote equity more 
effectively, ensuring historically marginalized commu-
nities are actively engaged in research and its applica-
tions. The use of AI to promote equity remains largely 

untapped, with most examples outside the field of IS 
[60, 61, 64–66].

2A4. Generalizability as an IS challenge
Although IS prioritizes generalizability and transport-
ability [67], limitations of data and human resources to 
conduct partner and participant engagement and col-
lect data can threaten generalizability. Generalizability 
decreases if the breadth of perspectives considered is lim-
ited when designing, implementing, or evaluating a study 
[68]. While AI’s role in easing resource demands through 
chatbots and NLP has been acknowledged, AI’s poten-
tial to enhance generalizability stretches beyond that. 
Because AI can sift through large amounts of complex 
data, it can incorporate insights from non-traditional 
sources. For example, social media platforms, with user-
generated content, can provide rich insights into public 
sentiment, behavior, and preferences, which increases the 
representation of perspectives and assists in generaliz-
ing findings across diverse populations [69]. The United 
Kingdom has applied AI to Twitter and Facebook forums 
to evaluate adverse reactions and understand public sen-
timent toward the COVID-19 vaccination and found that 
common and rare adverse effects were discussed with 
relatively equal frequency and that vaccine perceptions 
were largely positive over time (Table 3) [70]. Addition-
ally, AI can use crowdsourcing to increase the represen-
tation of diverse perspectives [71, 72]. Crowdsourcing 
has the potential to capture diverse insights from global 
audiences. AI has been used to coordinate and process 
data from large, crowdsourced projects, ensuring that 
perspectives are drawn from a cross-section of diverse 
individuals [73]. This means that studies can encompass 
views from varied geographical locations, socio-eco-
nomic statuses, and cultural backgrounds while operating 
within existing resource confines [74]. As is also the case 
with traditional data sources, the selection of an appro-
priate social media or crowdsourcing data source must 
be aligned with the target population or issue at hand 
to ensure relevance, and inherent data biases, including 
misinformation and missingness must be considered.

Moreover, the dynamic nature of the world means that 
generalizability is not static. Populations evolve, cultures 
shift, and societal priorities change. Here, AI can assist by 
automating continuous assessments of generalizability. 
Similar to approaches described above related to sustain-
ability, AI can monitor for changes that might impact the 
external relevance or transportability of study findings 
and provide alerts or updates when shifts are detected. 
Such iterative assessments, automated by AI, can be used 
to strategically guide adaptations such that the work and 
findings remain generalizable throughout all stages of a 
study and over time [57, 60, 61].
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2A5. Assessing context and context‑outcome relationships 
as an IS challenge
Traditional IS approaches to assessing context and out-
comes are often limited to the “stated” or simple inter-
pretations of the “realized.” While the stated (explicit 
declarations) often come from qualitative methods like 
partner engagement sessions or surveys with limited 
samples, the realized is generally garnered from quantita-
tive data necessitating a predefined hypothesis or signal 
[75]. Although emergent configurational analysis tech-
niques delve deeper into intricate relationships between 
context and outcomes [76], IS and traditional quantita-
tive approaches often fall short of capturing the intricate 
relationships of non-linear interactions. AI algorithms 
present new opportunities to address these challenges 
that are often inherent in complex data. AI can assimilate 
large and complex data repositories to discern non-linear 
relationships and detect patterns or context—implemen-
tation strategy—outcome relationships even without 
predefined signals [77–79]. One study leveraged AI and 
electronic health record data to understand reasons for 
gaps in clinician prescribing for a clinical scenario that 
had already been well studied using traditional mixed 
methods [75]. This study identified a variety of contex-
tual determinants, including some that were previously 
unrecognized and were used to inform the design of 
an ongoing IS trial (Table  3) [75]. The versatility of AI 
means that these algorithms are not only static tools, but 
that they can be optimized to constantly operate in the 
background, evolving with the data they encounter. This 
becomes particularly crucial in dynamic landscapes such 
as healthcare, where relationships between context and 
outcomes can change rapidly. As AI iteratively processes 
this information, it can provide a pulse on any emerging 
shifts, ensuring that IS remains responsive and adaptive 
to the changing context. While there are limited exam-
ples of AI being used to assess context for IS studies [75], 
there are additional avenues in which to explore how AI 
can be leveraged to assess changes in context, strategies, 
and outcomes.

2A6. Assessing causality and mechanism as an IS challenge
In IS, ascertaining causality and mechanism is difficult. 
While traditional quantitative tests for causality could 
assist [80, 81], as could more qualitative approaches 
such as mechanism mapping [82], deciphering the 
direct causal connections, rather than mere associative 
links, between interventions, implementation strategies, 
and outcomes, is difficult due to the complex interplay 
of confounding variables in real-world settings. Mod-
ern AI-driven causal inference and discovery mecha-
nisms offer a path forward for IS [83–85]. Leveraging 
structured graphical models, techniques such as causal 

Bayesian networks adeptly delineate explicit cause-and-
effect relationships, duly accounting for latent confound-
ers. Consider, for example, a healthcare scenario aimed 
at curtailing hospital readmissions. Whereas traditional 
analytical frameworks might predominantly identify an 
associative link between an intervention and reduced 
readmissions, AI causal tools probe deeper, scrutinizing 
whether the intervention itself was the direct catalyst or 
if obscured variables intervened. In Table  3, we provide 
a precision health example of using causal AI methods to 
generate treatment predictions for patients with demen-
tia [39]. Further enriching the AI toolkit are counterfac-
tual neural networks [86, 87], which could be used by 
IS practitioners to simulate hypothetical outcomes that 
would have occurred without specific interventions. 
Another notable advancement is AI’s deployment in ana-
lyzing potential or simulated outcomes, which elucidates 
the individual treatment effect, thereby shedding light on 
the distinct impact of interventions or implementation 
strategies on specific demographic or clinical subgroups. 
Such AI-based simulation models have the potential to 
save unnecessary resource expenditure (time, money) if 
a trial is predicted to produce a null effect. Through this 
AI-driven lens, IS could better assess causality and mech-
anism with heightened precision, fostering the design 
and deployment of increasingly effective and equitable 
programs. The use of AI to assess causality and mecha-
nism is a largely unexplored methodologic area for the 
field of IS.

2B. Potential consequences of using AI in IS
The consequences of using AI can be both positive and 
negative. Thus far we have focused on those positive con-
sequences that can be anticipated, but there are likely 
others that are unanticipated. For example, it is not yet 
known what the true potential of AI is, and AI-generated 
innovations could create solutions with benefits we can-
not begin to predict. However, when using AI, important 
considerations and potential adverse unintended conse-
quences need to be monitored and minimized [25–28]. 
Here we highlight potential cautions of using AI with 
examples of how AI has caused harm or gone awry. In 
Table  2, we explicitly relate these AI concerns with the 
AI solutions proposed above to address IS challenges. 
Across all of these counterarguments, proactive vigilance 
is required to identify and mitigate issues at each stage of 
the AI lifecycle, which includes (1) data creation, (2) data 
acquisition, (3) model development, (4) model evalua-
tion, and (5) model deployment [88]. We provide exam-
ples showing how AI can lead to erroneous conclusions, 
inequities, biases, or harmful behaviors.

Unmonitored AI applications (e.g., AI algorithms, chat-
bots, NLP) can lead to erroneous messages or results. AI 
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is restricted to the available data inputs and subject to all 
the biases of the data collection process, often referred to 
as “garbage in, garbage out.” For example, it is known that 
clinician diagnoses are biased by gender and race [25, 26], 
and models using such data will capture these biases. AI’s 
sentiment analysis can also incorrectly interpret data or 
be influenced more by counts or frequencies than a man-
ual human-only process would be, and such errors can 
significantly influence results [43]. These issues can be 
hidden or exacerbated when using “black box” AI models 
that result in an effect or outcome but do not allow for 
explainability of the processes that produced the effect 
[89].

In one study, an AI algorithm was applied to 14,199 
patients with pneumonia across 78 hospitals to risk-
stratify the probability of death [90]. The model 
recommended that patients with asthma were at 
lower risk than those without asthma. This recom-
mendation contrasted with existing evidence, thus 
triggering the researchers to investigate further. The 
researchers discovered that the data inputs biased 
this finding. Specifically, the data inputs did not 
capture the fact that patients with asthma and 
pneumonia were commonly directly admitted for 
treatment and thus had better treatment outcomes 
compared to patients who had pneumonia without 
asthma.

AI also has the potential to exacerbate or create new 
inequities. Reliance on data that underrepresent the 
population or that are subject to inherent biases stem-
ming from sexism, racism, classism, or mistrust leads 
to inaccurate predictions or evaluations and could per-
petuate inequities or misguide decision-making [26–28]. 
Misguided decision-making can be particularly apparent 
when AI is used to inform recommendations for tools 
such as clinical decision support within electronic health 
records.

Authors of another paper provide a use case of AI 
algorithms scheduling medical appointments to 
improve scheduling efficiency to illustrate how such 
AI algorithms can yield racially biased outcomes 
[91]. Such algorithms consider many factors, such 
as characteristics of patients that arrive late to 
appointments or “no show.” However, historically, 
Black patients have a higher likelihood of “no shows”; 
thus, the algorithm scheduled these patients into less 
desirable appointment times.

AI is beholden to the data inputs. Beyond inherent 
biases of how data are collected, data inputs are also 
subject to data drift (e.g., temporal changes in how and 
where data is documented) and can also lead to biased 

interpretations if the sample sizes are not representative 
or sufficiently large [92]. Traditional IS data sources have 
limited sample sizes, and data drift is common in rapidly 
changing environments where public health and health-
care happen.

In 2009 it was announced that by using AI applica-
tions and publicly available data from Google search 
engine queries for “flu-like symptoms,” researchers 
could predict regional flu trends 1-2 weeks earlier 
than the Centers for Disease Control and Preven-
tion [93]. Later, it was discovered that the prediction 
was no longer accurate, in part because of changes 
to search engines that prompted or suggested certain 
search terms to users, which changed the data inputs 
[94].

AI can tailor messages or nudges for specific popula-
tions in ways that prompt and facilitate good decision-
making [95, 96]. However, such AI applications can also 
inadvertently promote harmful behaviors. For example, 
AI has been leveraged to create tailored messages or 
nudges to increase consumer uptake of unhealthy food 
and beverages [97]. AI can learn and adapt its messag-
ing over time, thus posing the potential for messages 
originally well-intended to encourage inadvertent harm. 
Other ethical implications of nudges include situations 
in which certain options are forbidden and autonomy in 
decision-making is impaired [98–100].

2c. Intellectual property rights of using AI for IS
Intellectual property issues present unique challenges and 
opportunities when AI is used in IS for design, data anal-
ysis, or reporting [101]. Questions arise about property 
rights of the knowledge generated from AI models, espe-
cially when the knowledge generated stems from data in 
which it is unclear who owns the data. For example, AI 
models could leverage data sourced from public datasets 
or collaborative efforts in which ownership of the data is 
unclear. Furthermore, as AI aids in creating or optimiz-
ing interventions, discerning the boundaries between 
human-generated property and machine-augmented 
contributions can become ambiguous. It is imperative 
for researchers and practitioners to proactively navigate 
these complexities, ensuring that while AI propels IS for-
ward, it does so in a manner that respects and delineates 
intellectual property rights and contributions.

If relying on existing AI applications, it is important to 
identify and understand any potential intellectual prop-
erty rights, which could require fees for use or restric-
tions on how the AI can be used or disseminated. On 
the flip side, if creating de novo AI applications, it may 
be prudent to consider establishing intellectual property 
rights to enforce responsible use and avoid the potential 
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consequences outlined above. Intellectual property rights 
apply to any invention, such as EHR-based tools and 
decision aids, but in the case of AI, intentional use to pro-
mote responsible AI use may be novel and important to 
consider. While there are clear implications of intellectual 
property rights for AI applications themselves, there is 
less clarity regarding the property rights of AI-generated 
products [102, 103]. The latter is a new and developing 
area that is currently handled on a country-by-country 
basis. Although allowable under the laws of some coun-
tries such as the UK, the US stance is that AI-generated 
products are prohibited from intellectual property rights 
[103]. The fundamental question that served as the basis 
for the US’s decision was “How can a thing (not a human) 
own property?” The inability to predict or anticipate AI-
generated products confounded by limited means of reg-
ulation is cause for increased caution and monitoring.

Discussion and future directions
IS and AI can complement each other and have the 
potential to work together to increase the speed of sus-
tainable and equitable knowledge generation and trans-
lation to enhance healthcare and population health. 
We have focused on how AI can augment specific bot-
tlenecks faced by the field of IS, while others have called 
attention to ways in which IS can augment AI, which 
includes making AI more relevant to local settings, scal-
able, and sustainable [29–31]. In summary, key ways AI 
can help address IS-specific challenges include: increas-
ing the speed with which data can be collected, analyzed, 
and acted on; automating and reducing the workforce 
required to conduct partner engagement and other IS 
methods; expanding the size and heterogeneity of avail-
able data sources and participant recruitment; and 
increasing access to new methods to assist in discovering 
contextual influences and complex interactions between 
context, implementation strategies and outcomes. Focus-
ing solely on AI’s potential to automate many of IS’s tradi-
tional methods and processes, AI provides a path to help 
IS researchers and practitioners become more rapid and 
achieve goals of sustainability, equity, and generalizability.

AI presents new opportunities for IS and many 
potential AI applications remain largely unexplored or 
untapped by the IS community. As AI use assuredly 
increases, it needs to be monitored and used responsi-
bly to avoid unintended consequences, especially in the 
face of limited regulations on AI. It is also important to 
note that the benefits and pitfalls of AI may not equally 
apply to all types of AI and it is beyond the scope of this 
paper to address each separately, but the reader should 
keep in mind that there are differences based on the spe-
cific AI model and application. Among AI’s potential to 
cause harm, inequities have received much attention and 

may be one of the most challenging issues to monitor and 
mitigate. Inequities can surface over time, and multiple 
root causes include biased data inputs or data that do 
not represent the spectrum of cultures or perspectives. 
In this paper, we describe ways AI can optimize equity, 
but every use of AI also requires careful and ongoing 
vigilance for potential effects on inequities. Other poten-
tial pitfalls of AI discussed above include inaccurate pre-
dictions, recommendations, or interpretations of data. 
Another key challenge of AI is its algorithms’ reproduc-
ibility or “brittleness” across settings and over time [104]. 
There is a need for the regulations, frameworks, and 
guidance currently being developed for AI [105, 106] to 
include policies and procedures for systematic and pro-
active monitoring of unintended consequences and care-
ful consideration of “black box” models [89]. With the 
widespread update and examination of ChatGPT (and 
other AI online and related tools), there is increasing 
awareness about AI’s potential for errors [107–109]. The 
full potential of using AI to enhance IS is not yet known, 
nor is its potential for errors and harm, which makes the 
development of regulations even more challenging [101].

IS should take full advantage of AI’s benefits while 
being mindful of its pitfalls. To do so, a transdisciplinary 
team science approach is optimal. Team science certainly 
extends beyond AI and IS partnering, but we focus on 
these two fields here. Historically, the fields of AI and IS 
have had limited collaboration with different foci (e.g., 
heavily quantitative and causal versus mixed methods and 
pragmatic effectiveness). Now as each becomes essen-
tial to the vision of precision public health and learning 
health systems [7, 110–115], they are progressively realiz-
ing the value of each other. Given both are rapidly evolv-
ing fields and that it is hard to anticipate what is new or 
next, close collaboration or perhaps a new generation of 
cross-trained scientists is needed. Such cross-trained sci-
entists may be particularly adept at keeping pace with the 
latest discoveries related to AI’s potential and monitoring 
for and mitigating unanticipated consequences. To foster 
this budding partnership or cross-training between IS 
and AI, accessibility of expertise and resources is impor-
tant. In Table 4, we provide a select sample of resources 
and tools to facilitate the use of AI especially relevant for 
IS.

Conclusions
We call for increased uptake of innovations in AI through 
transdisciplinary collaboration to overcome challenges to 
IS methods and to enhance public health and healthcare 
while remaining vigilant of potential unintended conse-
quences. We acknowledge that our paper is “first genera-
tion” in that it is one of the first to describe intersections 
between AI and IS—in doing so, we hope to spark future 
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debate, scholarship, and enhancement of the concepts 
we have introduced. In Table  5, we provide concrete 
summary suggestions of how to begin to responsibly 
and optimally use AI, including building a representa-
tive team. Application of AI is complex and uncertain, 

but has the potential to make IS more efficient and can 
facilitate more in-depth and iterative contextual assess-
ment, which in turn can lead to more rapid, sustainable, 
equitable, and generalizable generation and translation of 
knowledge into real-world settings.

Table 4 Select resources and key references especially relevant for IS to learn about artificial intelligence

AI artificial intelligence

Resource Description (and costs)

RapidMiner
https:// rapid miner. com

A data science platform that aims to simplify AI for users, including those 
without coding experience
Requires paid subscription, but may be offered through institutional licenses

Tableau
https:// www. table au. com

A data visualization platform that includes native AI software that can be 
applied to data stored within
Requires paid subscription, but may be offered through institutional licenses

ChatGPT
https:// chat. openai. com

An AI-driven chatbot that responds to user prompts. Examples of responses 
to prompts can include drafts of medical necessity letters, manuscripts, 
and data visualizations (graphs, tables). There are different versions of Chat-
GPT and similar tools of varying sophistication and accuracy
Free versions are available

Example Data Science Training Programs:
https:// ischo olonl ine. berke ley. edu/ data- scien ce/
https:// brown school. wustl. edu/ acade mics/ aibda- certi ficate/
https:// brown school. wustl. edu/ resou rces- initi atives/ advan ced- learn ing- 
certi ficate/ artifi cial- intel ligen ce- appli catio ns- for- health- data/
https:// catal og. ucden ver. edu/ cu- ansch utz/ schoo ls- colle ges- progr ams/ 
gradu ate- school/ gradu ate- school- certi ficat es/ biome dical- data- scien ce- 
certi ficate/

Many academic universities offer graduate degrees, certificates, or boot 
camp-type programs in data science and other areas that provide AI train-
ing for diverse audiences
There is a cost

Coursera
https:// www. cours era. org/ colle ctions/ best- machi ne- learn ing- ai

Offers many online courses and programs in data science, AI, and different 
focus areas of AI
There is a cost but may be offered through institutional licenses

You Look Like a Thing and I Love You: How Artificial Intelligence Works 
and Why It’s Making the World a Weirder Place[116]

A lighthearted easy-to-read book for those with some or no baseline knowl-
edge of AI. The author uses practical examples to illustrate how AI works 
and its limitations without going into technical details or jargon
There is a cost to purchasing the audio or text

Journal articles providing guidance on NLP for qualitative analysis:
Chang T, DeJonckheere M, Vydiswaran VGV, et al.. Accelerating mixed 
methods research with natural language processing of big text data. J 
Mix Methods Res 2021;15:398–412 [117]
Lennon RP, Fraleigh R, Van Scoy LJ, Keshaviah A, Hu XC, Snyder BL, Miller 
EL, Calo WA, Zgierska AE, Griffin C. Developing and testing an automated 
qualitative assistant (AQUA) to support qualitative analysis. Fam Med 
Community Health. 2021 Nov;9(Suppl 1):e001287 [118]

Illustrative examples and recommendations for how NLP can be used 
for rapid qualitative analysis
There is a cost to some of the papers, but some may be free through institutional 
licenses or open access

Table 5 Recommendations to responsibly and optimally use AI in implementation research

AI artificial intelligence, IS implementation science
a Quotation attributed to John C. Maxwell

Build effective transdisciplinary teams That includes AI and IS expertise and representation of other perspectives, including other expertise, 
patients, community members, caregivers, staff

Have a creative mindset AI presents a new opportunity to innovate. Think and act creatively while being cautious of pitfalls

Be audacious, humble, and persistent Explore the potential of AI while anticipating things might go wrong and planning for iterations to check 
your work and correct course

Insist on and monitor equity Evaluate and advocate for the representation of perspectives and datasets as well as representativeness 
of outcomes

“Fail early, fail often, but always fail forward”a Be iterative to improve, including sustainability and equity

Conduct rapid learning AI and IS are changing rapidly. Establish a process for staying up-to-date on the latest developments 
affecting their integration

https://rapidminer.com
https://www.tableau.com
https://chat.openai.com
https://ischoolonline.berkeley.edu/data-science/
https://brownschool.wustl.edu/academics/aibda-certificate/
https://brownschool.wustl.edu/resources-initiatives/advanced-learning-certificate/artificial-intelligence-applications-for-health-data/
https://brownschool.wustl.edu/resources-initiatives/advanced-learning-certificate/artificial-intelligence-applications-for-health-data/
https://catalog.ucdenver.edu/cu-anschutz/schools-colleges-programs/graduate-school/graduate-school-certificates/biomedical-data-science-certificate/
https://catalog.ucdenver.edu/cu-anschutz/schools-colleges-programs/graduate-school/graduate-school-certificates/biomedical-data-science-certificate/
https://catalog.ucdenver.edu/cu-anschutz/schools-colleges-programs/graduate-school/graduate-school-certificates/biomedical-data-science-certificate/
https://www.coursera.org/collections/best-machine-learning-ai
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